A Closer Look At

The Shape Of

The Righ Jump Run-Up

Thanks to some video analysis done by Iiboshi and his team, new information can
now be plugged into the method for drawing the path of the high jumper's footprints
on the ground. The original article by Dapena on this subject was in issue #131 of
Track Coach. From this I gather elite jumpers have an unusual sense of finding the
right spot to jump from. No matter what the differences are . . . they get the run-up
to work. It is similar to Finnish javelin throwers, who may differ in the first part of
the run, but who all seem to know what to do in the last two steps.

The path of the
footprints 1n a high
jump run-up can be
1dealized as a straight
line perpendicular to
the bar, followed by a
circular arc which ends
at the takeoff (Figure
1). Such a path is de-
fined by the position
of the takeoff foot (its
X and y coordinates),
the angle between the
bar and the final direc-
tion of the footprints’
path (f), and the radius
of the curve (r).

A method for
drawing the path of the
footprints on the
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ground was described
In previous papers.
(See Dapena, et al.,
1993; Dapena, 1995a.
However, the numeri-
cal values needed for
the implementation of
this method were based
on limited information.

Recent work by
Iiboshi, et al. (1994)
provides data that can
help us to improve the
design of the run-up.
They used a special
video analysis tech-
nique to measure the
footprint locations of
the top eight men and
seven of the top eight
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women in the high jump finals of the
1991 World Championships. The last
successful jump was analyzed for
each athlete, with the exception of
Heike Henkel, who had to be studied
in a successful jump in which the bar
was set 5 cm below her winning
height. The Japanese research team
also collected other data, such as the
final speed of the run-up (v) and the
final direction of motion of the cen-
ter of gravity (c.g.) at the end of the

run-up.

FITTING A CURVE TO
THE FOOTPRINTS

(NOTE: This paper will refer to
athletes that take off from the left
foot; to make the text applicable to
athletes who take off from the right
foot, the words “right” and “left”
should be interchanged.)

We used a computer program to

fit an arc of a circle to the footprint
locations reported by Iliboshi, et al.
(1994). There are many ways to fit a
circle to the footprints of a high jump
curve; we decided to use the circle
that passed through the takeoft foot-
print and made the best possible fit
with the second, third and fourth foot-
prints before the takeoff. Notice that
we 1gnored the next to last footprint
(1.e., we used footprints O, -2, -3 and
-4, skipping footprint -1). The reason
for this was that many jumpers seem
to plant the right foot in the next-to-
last support outside the general curve,
and therefore the inclusion of this
footprint would have a misleading
effect on the shape of the fitted curve.
Figure 2 shows the footprints of

the 15 athletes analyzed at the 1991
World Championships and the circu-
lar arc that we fitted to the curve of
each run-up. The arc was continued
backward up to the point where it
was perpendicular to the bar; from
there, the path was ex-

tended backward along

extension of the final path
of the footprints

of the c.g.

g

\‘\\/

path of ")
the c.g. \
T r
center of the path

|
|
of the footprints [
.
!
!
|
|

extension of the final path

footprints

a straight line.

The drawings show
that all the jumpers 1n
the sample followed
very closely the mod-
eled circular path in the

takeoft DC:;W t last steps of the run-up

/(x,ycoor - (although, as expected,

_____________ in several jumps the
\* path of the J d

next-to-last footprint
was clearly outside the
general curve). About
half of the jumpers (e.g.,
Austin, Kovacs) used a
strict “straight line plus
circular arc” approach,
and their footprints fol-
lowed very closely not
only the curved section,
but also the straight sec-
tion of the path modeled
by the computer. The re-
maining jumpers (e.g.,
Drake, Henkel) started
the straight section of the
run-up somewhat farther
outward than predicted

Figure 1

by the computer model,
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and later converged into the final cir-
cular path.

In some jumpers (e.g., Drake, Ko-
stadinova) the second type of run-up
may have served to produce a more
gradual transition from the straight
section of the run-up to the final part
of the curve, which should make the
transition more comfortable. The dis-
advantage is that this run-up is obvi-
ously more complicated than the first
type, and may therefore lead to more
Inconsistency.

In other jumpers (e.g., Grant,
Kemp) the second type of run-up
seemed to be the result of the oppo-
site reason: a sudden change in the
direction of running at the start of the
curve (essentially, a kink 1n the path
at footprint -5) before settling into
the final curvature of the run-up. This
does not seem advisable, because the
sudden change in direction may in-
terfere with the run-up speed; it may
also lead to inconsistency.

The fitted curves allowed us to
calculate the radius (r) and the final
direction (f) of the curve for each
jumper. These values are shown 1n
Figure 2.

RELATIONSHIP
BETWEEN THE
RUNNING SPEED AND
THE RADIUS OF THE
CURVE

The proportion between the
square of the running speed and the
radius of the curve used by an athlete
determines how much the athlete will
lean. This can be expressed by the
formula q=v*/r; the larger the value
of g, the greater the lean. This means
that an 1ncrease in v while keeping
the radius constant will increase q,
and the athlete will lean more; an
increase in r while keeping the run-
ning speed constant will decrease q,
and the athlete will lean less. If an
athlete wants to achieve a given
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amount of lean, the ratio q between
v® and r needs to have some particu-
lar value which will be different for
each amount of lean.

It we knew the typical value of g
for high jumpers, we would be able
to use the running speed of any
jumper to estimate the appropriate
radius for the footprints of that
jumper, using the equation r=v?/q.

To check the value of g for each
high jumper 1n the sample, we would
need to divide the square of the av-
erage running speed of the athlete in
the entire curve by the radius of the
curve. Itboshi, et al. (1994) did not
measure the average running speed
during the entire curve for the ath-
letes shown in Figure 2, but they did
report the final speed at the end of
the run-up. We used the value of this
reported speed to make a rough esti-
mate of q for each jumper, using the
formula q=v°/r. The value of q was
6.8 £ 0.8 m/s? for the men, and 4.8 *
1.0 m/s* for the women.

These results indicated that the
men tended to lean more than the
women. A greater lean requires the
athlete to make larger horizontal
forces on the ground during the curve.
It 1s possible that the greater strength
of the men allowed them to run with
a greater lean without excessive dis-
comfort to interfere with the run-up
speed.

We can use the final run-up speed
of a high jumper and the average
value of g to estimate an appropriate
radius for the jumper’s run-up curve.
This will not necessarily be the opti-
mum radius for that individual, but it

1S

useful as a rough guideline. For

the men, the prediction equation is
r=v°/6.8; for the women, r=v%¥/4.8.
(These equations replace the one
given 1n the previous papers, which
was based on data from a single
jumper.)

RELATIONSHIP

BETWEEN THE FINAL

DIRECTIONS OF THE
PATHS OF THE C.G.
AND OF THE
FOOTPRINTS

The sketch in Figure 1 shows

that the c.g. travels directly over the
footprints during the straight part of
the run-up. However, in the transi-
tion to the curve the body tilts toward
the left. The tilt 1s maintained during
the curve, and the c.g. follows a path
that 1s somewhat closer to the center
of the curve than the footprints. At
the end of the curve, the paths of the
c.g. and of the footprints converge,
and this puts the c.g. more or less
directly above the left foot by the end
of the takeoft.

A consequence of the convergence

of the two curves 1s that the final angle

of

the c.g. path (p) 1s always larger

than the corresponding angle of the
footprints’ path (f). Iiboshi, et al. (1994)
reported the value of angle p for each
of the jumpers shown in Figure 2. Using
the values of f which we computed
from the fitted curves, we were able to

Table 1

final direction final direction of value of

of the run-up the footprints’ path distance |
(angle p) (angle f)

7 i 10° 1.75 m

30° iy 2.70 m

. ' g 20° 3.65 m

40° 2y 4.65 m

45° 30° 575 m

50° 35" 7.00 m

IRACK COACH — 4409

calculate the difference between angles
p and f: 15 + 5°.

In the previous papers (Dapena,
et al., 1993; Dapena, 1995a) the dif-
ference between angles p and f was
used to produce a table that showed
for several values of the final direc-
tion of the run-up (angle p, which
indicates the final path of the c.g.) a
distance called “)”. This distance is
necessary for the calculation of the
direction of the center of the curve
relative to the takeoff point (see Fig-
ure 3), and therefore it 1s ultimately
needed for drawing the path of the
footprints on the ground. The newly
calculated difference between angles
p and f leads to a modified table for

the calculation of j (Table 1).

PRACTICAL
IMPLICATIONS

To draw the path of the foot-
prints on the ground, we strongly
advise the reader to follow the de-
tailed instructions given in the previ-
ous paper (Dapena, 1995a), but using
the new formulas to estimate the ra-
dius of the curve (r=v?/6.8 for the
men; r=v*/4.8 for the women), and
the new table to estimate the value of
distance j. (If you are unable to find
the previous paper, please contact
I'rack Coach editor Mr. Kevin
McGill, Box 259, Boxford, MA
01921, USA, for a free copy.)

OTHER
CONSIDERATIONS

The jumps shown in Figure 2
used a wide range of values for the
radius of the curve (between 6.71 m
and 13.32 m). If the path of the foot-
prints had had the same final direc-
tion (angle f) in all these jumps, the
distance between the right standard
and the straight part of the run-up
(measured outward from the standard)
would have needed to have a vari-




takeoff point

path of the

/ footprints

S - start of
\ r the curve
Y

center of the path

of the footprints

(center of the curve)

. start of
the run-up

Figure 3

ability of about 4 meters. This 1s
demonstrated by the hypothetical run-
ups shown in Figure 4a. However,
Figure 2 shows that the distance from
the right standard to the straight part
of the run-up was actually constrained
between approximately 4 and 6
meters for all the jumps, a variability
range of only 2 meters.

The small variability in the posi-
tion of the straight part of the run-up
in spite of the large variability 1n the
radius of the curve implied that the
athletes in the sample tended to make
systematic changes in the final angle
of the footprints as they made changes
in the radius.

This can be understood better
with the help of Figure 4b. The
straight parts of the three hypotheti-
cal run-ups shown in this drawing
were all at the same distance from
the right standard (5 meters). Each
run-up used a different radius, but
still they all ended up at the same
takeoff point. The differences be-
tween the three run-ups started with

differences in the starting point of

the curve. By traveling deeper to-
ward the plane of the standards
before starting the curve, the ath-
lete can use a smaller radius, and
still reach the same takeoff point.
However, the final angle of the
footprints’ curve will also be
smaller (i.e., the final path of the
footprints will be more parallel to
the bar).

The high jumpers in the sample

did not follow exactly the pattern
of variation shown in Figure 4b,
because the distance between the
right standard and the straight part
of the run-up did fluctuate in the
sample (see Figure 2). However,
this fluctuation was rather small
(about 1 meter in either direction
around the 5-meter point), and
therefore the basic relationships of
the hypothetical jumps ot Figure
4b were present in the jumps of
Figure 2: the athletes who used a
large radius (e.g., Henkel,
Kostadinova) tended to have large
values of f, while the athletes who
used a small radius (e.g., Conway,
Babakova) tended to
have small values ot
f.

In theory, a high
jumper should be able
to try any combina-
tion of radius (r) and
final angle of the
footprints’ path (f):
for any given value
of f, the jumper
should be able to try
a wide variety of val-
ues of r, as shown in
Figure 4a; and for any
given value of r, the
jumper should be able
to try a wide variety
of values of f, as
shown in Figure 4c.
However, to a great
extent this did not
happen; the jumpers
in the sample tended
to follow a pattern
similar to the one
shown in Figure 4b,
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1996 Olympic champion Stefka Kostadinova.

in which there was a positive corre-
lation between the values of r and f.

It is not clear why the jumpers
linked the values of r and f in this
way, but we have come up with two
possible theories:

The first theory i1s based on the
relationship between the radius of the
curve and the need for the generation
of angular momentum. During the bar
clearance, a high jumper needs angu-
lar momentum in order to make the
appropriate rotations over the bar.
This rotation can be broken down
into a twist rotation and a somersault
rotation (Dapena, 1995b). The twist
rotation serves to turn the back ot the
athlete toward the bar; the somer-
sault rotation makes the shoulders go
down and the knees go up during the
bar clearance. Taking into account
the final direction of the run-up, the
somersault rotation can be broken
down into a forward somersaulting
component and a lateral somersaulting
component. One of the main purposes
of the curved run-up is to favor the
production of the lateral somersault-
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Ing component of the angular momen-
tum. (The other one is to lower the c.g.
in the last steps of the run-up.)

The high jumpers who are trav-
eling more parallel to the bar at the
end of the run-up will tend to need a
smaller amount of forward somer-
saulting angular momentum and a
larger amount of lateral somersault-
ing angular momentum in order to
produce a total somersault rotation
that makes the longitudinal axis of
the athlete be perpendicular to the
bar at the peak of the jump. This
means that, to some extent, we should
expect athletes who are traveling
more parallel to the bar at the end of
the run-up to use tighter curves
(smaller radius) in order to facilitate
the generation of a larger amount of
lateral somersaulting angular momen-
tum during the takeoff. This may be
part of the reason why the athletes
who used smaller radius values tended
to be those who were traveling more
parallel to the bar at the end of the
run-up (Figures 2 and 4b).

The second theory is that the high
jumpers in the sample may not have
fully explored all the possible op-
tions for the distance between the
right standard and the straight part of
the run-up. They may all be starting
within the narrow range between 4

Figure 4

and 6 meters simply because the other
high jumpers also start there. If this
1s the case, the jumpers are unneces-
sarily restricting the combinations of
r and f that they can use.

For 1nstance, let us assume that
a jumper who 1s using the combina-
tion r=9 m and {=23° with the straight
part of the run-up 5 meters out from
the right standard (i.e., the middle
path 1n Figure 4b) wishes to try a
run-up with a 7-meter radius, but
maintaining f at 23°. If this jumper
keeps the straight part of the run-up
at the S5-meter distance, it will be
impossible to combine the 7-meter
radius with a final angle of 23°; the
athlete will have to change the final
angle to 12° (see Figure 4b). How-
ever, 1f the jumper brought the
straight part of the run-up to a dis-
tance of less than 4 meters from the
right standard, the combination of a
7-meter radius with a final angle of
23° would be possible (Figure 4a).

It the second theory is correct,
the next question would be, what
drives the athletes’ decisions within
Figure 4b (or within Figure 2)? Do
they decide to use a certain radius,
and are then forced into a final angle
that may or may not be desirable? Or
do they decide to use a certain final
angle, and are then forced into a ra-
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dius that may or may not be desir-
able?

At this time, we do not know for
certain the reasons for the linkage
found between the radius of the curve
and the final direction of the foot-
prints in the finalists from the 1991
World Championships. However, we
believe that coaches should feel free
to experiment with a variety of com-
binations of r and f, even if some of
those combinations take the straight
part of the run-up out of the 4-6 meter
range currently used by most high
jumpers.
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